Skema til afrapportering af ViD projekter Videncenter for Dyrevelfærd 2015 #### 1. Projekttitel: Hestevelfærd og træning #### 2. Projektleder og projektdeltagere (titel, navn, adresse, tlf., e-mail): Lektor Janne Winther Christensen, Institut for Husdyrvidenskab, Blichers Allé 20, 8830 Tjele, Aarhus Universitet, tlf.: 87158075, e-mail: jwc@anis.au.dk #### Andre projektdeltagere: Dr. Andrew McLean, Australian Equine Behaviour Center og University of Sydney, Australia Prof. Paul McGreevy, University of Sydney, Australien Dr. Uta König von Borstel, Göttingen Universitet, Tyskland #### Følgeperson i Fødevarestyrelsen: Birte Broberg ## 3. Populærvidenskabeligt dansk resumé (max 250 ord): Opgørelser har vist, at mange heste aflives i en ung alder pga. adfærdsproblemer. Samtidig rangerer ridning som en af de farligste sportsgrene, både i forhold til antallet af ulykker og i særdeleshed når ulykkernes alvor tages i betragtning. Adfærdsbiologi kan bidrage med væsentligt input til optimal og effektiv træning af heste under hensynstagen til hestens velfærd. En bedre formidling af forskningsbaserede resultater og dermed bedre forståelse for internationalt anerkendte principper for dyrs indlæring og træning vil kunne reducere forekomsten af både adfærdsproblemer og ulykker med heste. Forskningsresultater vedr. indlæring og træning bør således integreres i praktisk træning og omgang med heste. Den nye udgave af bogen 'Equitation Science' har netop til formål at bygge bro mellem videnskabelige forskningsresultater og praktisk hestetræning. Bogen formidler principperne for dyrs indlæring på en letforståelig måde med mange praktiske eksempler. Desuden indeholder bogen en gennemgang af forskningsresultater indenfor hestetræning og rytterens indvirkning på hesten. Bogen sætter desuden fokus på noget af det traditionelle udstyr, som anvendes i hestesport, og som kan udgøre en risiko for hestevelfærden. Den obligatoriske anvendelse af visse typer af udstyr i konkurrencer bør tages op til overvejelse af det internationale rideforbund (FEI). Bogen forventes at blive en væsentlig kilde til information for dyrlæger, konsulenter, studerende, ryttere, trænere og journalister. Desuden kan bogens indhold anvendes som baggrundsmateriale, når danske myndigheder eventuelt skal vurdere konsekvenser af forskellige træningsmetoder på sportshestes velfærd. #### 4. Populærvidenskabeligt engelsk resumé (max 250 ord): The debate on welfare of horse during training and competitions is ongoing. Understanding the principles of learning can help horse-trainers work with their horses in a way that maintains the horse's welfare as paramount. Like all animals, horses learn most effectively when the training methods are appropriate. Inappropriate training practices can also have a negative impact on a horse's welfare and can lead to conflict behaviours that jeopardise the safety of riders and trainers. The second edition of the book Equitation Science aims to communicate learning theory and presents a review of the current research on horse training. Equitation Science addresses a series of important problems. Firstly, it elucidates the role of negative reinforcement and habituation. Secondly, it addresses the need to measure rider interventions that may compromise horse welfare, which will assist the administrating body of equestrian sport, the Fédération Equestre Internationale (FEI), in determining what practices and interventions are acceptable on welfare grounds. For example, devices such as whips and spurs are still used routinely. Indeed, at elite levels, spurs and double bridles (which are more severe in their action than regular single bits) are mandatory. Third, and perhaps most important, Equitation Science can help educate current and aspiring riders in how best to apply the core principles of learning theory. By improving riders' and coaches' basic appreciation of the science that underpins their work, we will be able to engage them in improvements that occupy the cutting edge of equitation. # 5. Videnskabeligt dansk resumé af projektets formål, udførelse, væsentligste resultater og konklusion (max 500 ord): Træning af heste baseres primært på den indlæringsmekanisme, der betegnes negativ forstærkning, dvs. at hesten påføres et pres (f.eks. i munden gennem biddet og tøjlerne), og dette pres fjernes, når hesten reagerer korrekt. Det er ved ophøret af presset, at hesten lærer, hvad rytteren ønsker af den, og timingen af ophøret af pres er central – både i forhold til hestens indlæring og dens velfærd. Konfliktadfærd opstår, når hesten ikke forstår, hvad er forventes af den, og når den udsættes for konstant pres. Opgørelser har vist, at mange heste aflives i en ung alder pga. adfærdsproblemer, og ridning rangerer som en af de farligste sportsgrene, både i forhold til antallet af ulykker og i særdeleshed når ulykkernes alvor tages i betragtning. En bedre formidling af forskningsbaserede resultater og bedre forståelse for internationalt anerkendte principper for dyrs indlæring og træning vil kunne reducere forekomsten af adfærdsproblemer og ulykker med heste. Særligt når der trænes ved hjælp af pres, har træneren en væsentlig forpligtelse til at sørge for, at dyret ikke lider overlast, og at presset fra f.eks. bid og sporer ikke bliver konstant. Den nye udgave af bogen Equitation Science har til formål at formidle principperne for dyrs indlæring på en let forståelig måde og relateret til praktisk hestetræning. Bogen indeholder desuden et opdateret review af videnskabelige artikler indenfor hestetræning og ridning, etologi og kognition, stress, udstyr og biomekanik med inddragelse af den danske forskningsindsats på området. Bogen forventes at understøtte debatten om hestevelfærd og træning med facts og dokumentation og forventes at være med til at sætte fokus på korrekt anvendelse af læringsteori, og uddannelse af hest og rytter under hensyntagen til hestevelfærd. ## 6. Baggrund for projektet: Den første udgave af bogen 'Equitation Science' blev udgivet i 2010, forfattet af to anerkendte forskere indenfor træning af heste, Dr. Andrew McLean og Prof. Paul McGreevy, Australien. Forlaget Wiley-Blackwell har bedt forfatterne om at udarbejde en '2nd Edition'. De to forfattere har inviteret lektor Janne Winther Christensen, Aarhus Universitet, og Dr. Uta König von Borstel, Göttingen Universitet, Tyskland, til at udarbejde denne reviderede udgave af bogen med mindst 30% nyt indhold, herunder særligt med fokus på inddragelse af egne forskningsresultater. Bogen indeholder et review af videnskabelige artikler om hestetræning og principper for dyrs indlæring, formidlet på en let forståelig måde med mange praktiske eksempler. Desuden fungerer bogen som et opslagsværk med en ordliste og forklaring af de meste anvendte termer indenfor indlæringsteori. Bogen henvender sig til både ryttere, trænere, rådgivere, myndigheder, studerende og forskere med interesse for træning af heste og konsekvenserne for hestens velfærd. ## 7. Beskrivelse af projektets formål, hypoteser samt materialer og metoder: Udgivelse af international, videnskabelig bog om hestevelfærd og træningsprincipper. **8. Oversigt over projektets samlede resultater** (herunder hvordan resultaterne bidrager til at opfylde projektets formål): Bogens indholdsfortegnelse: | | Preface | |----|---------------------------------------------------| | | Introduction - The Fascination with Horses and | | 1 | Learning | | 2 | Ethology and Cognition | | 3 | Anthropomorphism and the Human-Horse Relationship | | 4 | Non-associative Learning | | | Associative Learning (Classical conditioning and | | 5 | attractive stimuli) | | 6 | Associative Learning (Aversive stimuli) | | 7 | Applying Learning Theory | | 8 | Training | | 9 | Horses in Sport and Work | | 10 | Apparatus | | 11 | Biomechanics | | 12 | Unorthodox Techniques | | 13 | Stress and Fear Responses | |----|----------------------------------------| | 14 | Ethical Equitation | | 15 | Research Methods in Equitation Science | | 16 | The Future of Equitation Science | | | Glossary | JWC har været ansvarlig for kapitler markeret med blåt. Herunder er indsat et uddrag fra bogen (kapitel 1) som illustration. # 1 Introduction — The Fascination with Horses and Learning #### Introduction Everybody who spends time with horses will from time-to-time become fascinated by their behaviour and learning abilities. One does not have to search for long to find reports of extraordinary learning performance in individual horses; examples range from 'Clever Hans', the horse that appeared to be able to count and read but, even more interestingly, was responding to very subtle cues from human bystanders; to reports of horses being able to open box doors and gates (Figure 1.1), to everyday accounts of circus and sports horses performing precise movements in response to small cues from their trainers or riders (Figure 1.2). **Figure 1.1** 'Horses on the run': In 2013, the story about Mariska hit the world press after her owner posted a YouTube video showing how Mariska could open not only her own box door but also make her way to open the doors of the other horses' boxes. Figure 1.2 Horses can learn to respond to and differentiate between light tactile cues from their riders regardless of the type of gear used. Humans have been fascinated by animal learning for centuries and, since the 1800s, scientists from various fields have investigated the mammalian and avian brain to understand how animals of different species learn and adapt to their environments. The best-studied species are rodents and birds, primarily because these species are easy to study and to keep in a laboratory. Despite the evolutionary differences between these species, remarkable similarities exist in the way they learn. This has resulted in the development of 'learning theory', a set of principles that apply to all animals and explain how animals learn. Learning theory has revolutionised the way humans think about animal-training, and learning theories are applied with great success in the training of, for example, dogs, marine and other zoo animals (Figure 1.3). Indeed, it is difficult to find a modern training manual for these animals that does not use learning theory as a basis. Learning theory establishes clear guidelines and training protocols for correct training practices and methods of behaviour modification. It is truly fascinating, easy to relate to and quite simple to understand. Throughout this book, we will repeatedly refer to 'learning theory' as simply a comprehensive term for 'the ways in which animals learn'. Similarly, more and more horse-trainers use and teach learning theory and understand the opportunities it can offer trainers in every discipline. Like all other animals, horses learn in predictable and straightforward ways. However, traditional horse-training differs fundamentally from the food-based training methods used for marine mammals, exotic carnivores and most companion animals because it largely relies on what is termed 'negative (subtraction) reinforcement'. During their early training, horses learn that the correct response results in the reduction of pressure from the bit via the reins when they *stop* or *slow*. Pressure from the rider's legs or spurs is reduced when the horse moves forward. To be effective and humane, the application of pressure must be subtle and its removal immediate once the horse complies. This reliance on pressure and the release of pressure underlines the need to ensure that training programs are effective and humane. Science can and should step in to measure, analyse and interpret what we do with and to horses. Figure 1.3 Modern training manuals for many species are based on learning theory. Understanding the rules of learning can help horse-trainers work with their horses in a way that maintains the horse's welfare as paramount. Learning theory is not necessarily an ethical theory but it helps us train horses in a way that makes it as easy as possible for the horse to respond and succeed during training. Furthermore, it allows us to avoid behavioural side effects such as fear or aggression, caused by inappropriate training. Veterinary epidemiologists, whose job it is to describe the spread and impact of disorders, often talk about wastage within a population. This is the percentage of animals or, in the case of working animals, the percentage of potential working days lost through illness or disease. Problem behaviours are the cause of much of this wastage, and in the world of the riding horse it is more significant than many of us would like to imagine (Hothersall and Casey, 2012). A global improvement in application of learning theory, particularly the timing and consistency of pressure and release, could lead to a significant increase in the number of horses considered to be trainable (Figure 1.4). **Figure 1.4** Theoretical normal distributions to show how the numbers of horses that cope with training can be increased by using more enlightened approaches. (*Reproduced from* Equine Behavior, *copyright Elsevier 2004*.) Horses are being confused on a very regular basis by less-than-ideal handling and become unusable or, worse, dangerous as a result (Hawson *et al.*, 2010). For example, Buckley (2007), reporting on 50 out of 84 Pony Club horses, noted that this focal sub-set of owners reported a total of 251 misbehaviour days during a 12-month period. Importantly, on more than half of these days, this misbehaviour was classified as dangerous enough to cause potential injury to horse and/or rider. Horse-riding is generally considered to be more dangerous than motorcycle riding, skiing, football, and rugby (Ball *et al.*, 2007). In Australia, horse-related injuries and death exceed those caused by any other non-human species (domestic or otherwise) (AIHW National Injury Surveillance Unit, 2005). Among non-racehorses, previous studies indicate that up to 66% of euthanasia in horses between 2 and 7 years of age was not because of health disorders (Ödberg and Bouissou, 1999). The implication is that they were culled for behavioural reasons. Clearly, this level of behavioural wastage is unacceptably high. The likelihood is that many such horses are mistrusted or labelled troublesome. With their reputation for being dangerous preceding them, they are met with an escalation of tension in the reins or pressure from the rider's legs, the very forces they have learned to fear and avoid. Difficult horses go from one home to the next and are often forced to trial new ways of escaping pressure and satisfying competing motivations. #### The scientific approach Science is sometimes accused of objectifying animals, but the emergence of animal welfare science has already created changes in legislation that have improved animal wellbeing. It has shown us how modern diets may prompt obsessive—compulsive disorders; how weaning can affect social relations among animals; and how the behaviour of a breed can be a product of its shape. It is the rigour of the scientific approach that ensures that we arrive as closely as possible to the truth about horses. The scientific method sometimes seems tedious because of its insistence in dismantling the elements of the questions piece by piece and its tactic in not setting out to prove a hypothesis but to disprove the null hypothesis (the non-existence of it). It is rather like the legal notion of innocent until proven guilty. Similarly, in science it is empty until proven full. An important tenet in behaviour science is Lloyd Morgan's canon, which dictates that in no case should an animal activity be interpreted in terms of higher psychological processes if it can be reasonably interpreted in terms of processes that stand lower in the scale of psychological evolution and development. Occam's razor (The Law of Parsimony) is a more general maxim that decrees that in making explanations, you should not make more assumptions than the minimum needed, so if a phenomenon can be explained in terms of simple rather than more complex ways, it is more likely to be correct. The more assumptions you have to make, the more unlikely an explanation is. This principle underpins all scientific theory building. It is easy to make rash assumptions about horse behaviour, intent and purpose. Those with concerns about applying a scientific approach to equitation seem to fear the construction of equitation as a science, which is certainly not our intent. Equitation science represents the scientific study of equitation; it does not seek to turn equitation into a science. Scientific measuring of variables is important because it allows riding and training techniques to be compared so as to demonstrate what works and what does not. Equitation science will also allow us to measure the welfare consequences of doing the wrong thing. The physical interactions between humans and their horses are readily available for study. For welfare reasons, understanding these interactions correctly is crucial because, on the one hand, excessive pressure is often being used to signal to horses and, on the other, we cannot expect horses to know what we require of them without at least some cues. In all other sports, technologies such as kinematic analysis and pressure-detecting devices have been able to refine human technique. If we accept that horses work best when riders have good technique, we can see that, as sentient beings, they are more deserving of these advances than any piece of sporting apparatus. Like all animals, horses learn most effectively when the training methods are appropriate. Inappropriate training practices can also have a negative impact on a horse's welfare and can lead to conflict behaviours that jeopardise the safety of riders and trainers. Equitation science gives us a way of measuring and interpreting interactions between horses and their riders. Equitation science has the potential to address a series of important problems. First, it elucidates the role of negative reinforcement and habituation in the learning processes of horses on which we ride and compete. Second, it addresses the need to measure rider interventions that may compromise horse welfare, which will assist the administrating body of equestrian sport, the Fédération Equestre Internationale (FEI), in determining what practices and interventions are acceptable on welfare grounds. For example, devices such as whips and spurs are still used routinely by some trainers. Indeed, at elite levels, spurs and double bridles (which are more severe in their action than regular single bits) are mandatory. Third, and perhaps most important, equitation science will educate current and aspiring riders in how best to apply the core principles of learning theory. By improving riders' and coaches' basic appreciation of the science that underpins their work, we have been able to engage them in improvements that occupy the cutting edge of equitation. In some sectors of horse-training, such as the sport of dressage, the cues and signals used to elicit alterations in the mobility and posture of horses are known as 'aids'. This word is antique in origin, derived from the French verb 'aider', meaning 'to help'. The notion that cues in any way offer assistance to horses is anthropocentric and has been abandoned in our text because it nourishes the notion of the 'benevolent' horse, the horse that is a willing partner. Horse-trainers should respectfully recognise that training is an act of equine exploitation rather than equine enlightenment, and modern equitation must take full account of the cognitive processes of the horse. Any system of riding that aligns with learning theory will result in subtle signalling and therefore, by implication and necessity, an independent seat. Our contention is that *stop* responses to the bit and *go* responses to the rider's legs are the foundations that underpin all advanced riding techniques. It would be good to see a return to traditional coaching protocols that required novice riders to learn to balance before picking up the reins. This would avoid them delivering conflicting signals. This book is essentially an introductory text because there is much still to discover about the way mechanisms of horse-training align with more than a century of studies of learning in laboratory animals. There is also room for considerable caution because there is no laboratory equivalent for the ridden horse – you cannot ride a rat. Without restraining a rat, you cannot easily apply and then release pressure, and the horse probably provides the best model for studies of negative reinforcement. This possibility represents one of the most exciting aspects of equitation science. The aim of this book is twofold: we partly aim to describe learning theory and give examples of how learning theory can be applied to practical horse-training. We also aim to provide an overview of the current state-of-the-art of scientific studies relating to equitation. The purpose of this book is not to sell or publicise a particular training method, but to communicate the principles of learning theory and the science of equitation (Figure 1.5). It should be noted that just because a training method can be explained through learning theory does not necessarily mean that it is ethical or safe. Training is essentially an exploitative event and it is always the responsibility of the trainer to prioritise the horse's welfare and safety above any training goal. **Figure 1.5** Equitation science is for everyone who spends time with horses and ponies. The training techniques presented in this book apply to all types of horses and all disciplines. Regardless of whether you are an international competition rider, a horse-trainer or a leisure rider, knowing how to use learning theory is the key to all good training and good horse welfare. #### 9. Diskussion af projektets resultater: Arbejdet med bogen har været væsentlig mere tidskrævende end først antaget, og vi har gennemført en grundig bearbejdning af hele bogen. Den australske 'project manager' har således været nødt til at udsætte deadline for indsendelse af bogen til forlaget, senest fra 1. til 15. marts, fordi den tyske deltager fødte et barn før tid. Det tidskrævende arbejde med bogen har også betydet, at jeg måtte udsætte en dansk artikel til magasinet Dyrlægen, som var aftalt i januar. Ny deadline er 15. marts og artiklen eftersendes til ViD's sekretariat (se punkt 11). Bogen fremstår således helt opdateret med de nyeste forskningsresultater, inkl. den relativt store danske forskningsindsats på området. Dette forventes at synliggøre dansk forskning og bidrage til øget internationalt samarbejde. #### 10. Konklusion og perspektivering (herunder forslag til opfølgende projekter): Der er rig mulighed for forbedring af hestes velfærd under træning og ved konkurrencer ved overholdelse af internationalt anerkendt principper for dyrs indlæring. Formidlingen af disse principper bør være et fokuspunkt for det internationale rideforbund (FEI) samt for nationale rideforbund og organisationer med interesse for hestevelfærd. Den obligatoriske anvendelse af udstyr som kandarbid og sporer ved konkurrencer bør desuden genovervejes. Der bør i højere grad bygges bro mellem forskningsresultater og praktisk hestetræning. Den nye udgave af bogen Equitation Science har netop til formål at formidle forskningsbaserede træningsprincipper som tager hensyn til hestens belastning. Det er et håb, at bogen kan være med til at udbrede kendskabet til disse principper og dermed forbedre velfærden for heste som anvendes til fritid og sport. # 11. Redegørelse for hvordan projektet og projektets resultater har været eller forventes offentliggjort: Bogmanuskriptet er afleveret til korrekturlæsning og submittes til Wiley-Blackwell d. 15. marts 2017. Desuden er der indgået aftale med magasinet Dyrlægen om en dansk artikel, som skal leveres d. 15. marts og trykkes i næste nummer af magasinet. Artiklen eftersendes til ViDs sekretariat d. 15. marts. Endnu en artikel vil blive indsendt til Hestemagasinet/Ridehesten i marts. Denne eftersendes ligeledes til ViDs sekretariat. Ved udgivelsen af bogen sendes et eksemplar til ViD's sekretariat.